Abstract

Four laboratory-scale biological nitrification units (influent total Kjeldahl nitrogen [TKN] = 1002 to 1062 mg/L) were operated at chemical oxygen demand (COD)/TKN ratios of approximately 0.5, 1.0,15, and 2.0 and at three different sludge ages of 30, 20, and 10 days to study the influence of COD/TKN, sludge age, COD loading, and TKN loading on nitrification and nitrifiers. Percent nitrification was found to increase with decreases in COD/TKN and increases in sludge age. The average nitrifier concentration increased from 460 mg/L at a COD/TKN of 2.22 and a sludge age of 10 days to 706 mg/L at a COD/TKN of 0.676 and a sludge age of 30 days. The nitrifier fraction was found to be higher at a lower COD/TKN and lower at a higher COD/TKN. The nitrifier fraction increased with the decrease in sludge age and COD loadings and the increase in TKN loadings. The effect of sludge age on the nitrifier fraction was amplified at a COD/ TKN of approximately 0.5 rather than at approximately 2.0. The nitrification rate (kilograms TKN oxidized per kilograms nitrifiers per day) was shown to be dependent on COD/TKN and sludge age. The activity performed by Nitrobacter was affected at all COD/TKN ratios studied as well as at a sludge age of 10 days. This was manifested by the accumulation of high levels of nitrite-nitrogen in the nitrified effluent. The presence of heterotrophs did not affect nitrification rates and the growth of nitrifiers, which were found to be beneficial. High sludge age and COD loadings resulted in a higher sludge volume index of more than 200 mL/g mixed liquor suspended solids. Microscopic examination showed filamentous structure of sludge under these conditions. It is concluded from the investigations that a sludge age of 30 days and a COD/TKN of approximately 1.0 are optimal to yield maximum nitrification and nitrifier growth rates for treating high-strength nitrogenous wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.