Abstract

The analysis of polysorbate 80 is a challenge because all components lack a chromophore. Here, an ultra-high-performance liquid chromatography system equipped with a charged aerosol detector (UHPLC-CAD) was used to study the effect of systematic variation of the CAD settings, namely evaporation temperature, filter constant and power function value (PFV), on the detector response of fatty acid standards and manufacturing batches of polysorbate. Evaporation temperature and filter constant strongly affect the detection limits described by signal-to-noise (S/N) ratios. Although evaporation temperature can be increased to improve signal to noise ratios, analyte volatility at higher temperatures is an important limiting factor. The PFV was found to be a strong tool for optimizing response linearity, but the optimal PFV differed depending on analyte volatility. Because PFV optimization required some additional measurement time and because double-logarithmic transformation at the default PFV of 1.0 yielded satisfying universal results with less measurement time over a range of two orders of magnitude for every homologue fatty acid from C14 to C18, use of the log-log transformation is the favored linearization strategy. Possible optimization procedures for semi volatile substances are presented. Overall, this new UHPLC method method offers improved detection limits, as well as time savings of over 75% and eluent savings of more than 40% compared to the previously published HPLC-CAD method for polysorbate analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.