Abstract
An electrohydrodynamic (EHD) conduction micropump with symmetric planar electrodes is developed to investigate the effect of micropump chamber dimensions on static pressure and flow rate. The interdigitated electrodes are created on an FR-4 CCL (copper clad laminate) using photolithography. The micropump consists of an electrode plate, chamber plate, top and bottom end cover. A 2D numerical simulation study is conducted to provide details about the ion distribution and fluid flow behaviors within a local domain of micropumps with different chamber height. Experimental results show that, by increasing chamber height, the static pressure and flow rate rise with a big slope under a chamber height of 0.2 mm, and henceforth decrease dramatically. The variation trends of static pressure and flow rate with an increase in chamber height are determined by the combination of ion concentration distribution and fluidic circulation formed between the two electrodes. Additionally, the effect of the chamber width and length is experimentally analyzed for optimum pressure and output flow rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.