Abstract

Asphalt and cement concrete are the most popular materials used in the construction of roads, highways, bridge deck surface layers and pavements in airports and other areas with heavy wheel roads. Whereas asphalt possesses, compared to concrete, the advantages of a short curing period, high skid resistance and easy maintenance, it also shows lower fatigue durability, ravelling and rutting due to repeated concentrated loads and susceptibility to temperature changes and moisture. On the other hand, concrete pavements are initially more expensive, have lower driving comfort and are susceptible to cracking due to volume changes and to salt damage. A material with low-environmental impact and with advantages of both asphalt and concrete may be obtained by combining bitumen emulsions and a cementitious material. In this paper, cold asphalt mixtures with different amounts of cement were tested with Marshall stability tests. Selected mixtures were also cured at different environmental relative humidity (35, 70 and 90 % RH). By monitoring the mass of the specimens and estimating the water bound by the cement, the total water remaining in the mixtures was calculated. Details of the microstructure in the mixtures were examined with X-ray microtomography. According to the results of the present study, cement contributes to the hardening of cold asphalt mixtures both by creating cement paste bridges between the aggregates and by removing water from the mixtures through cement hydration. Asphalt and cement composites appear to be promising materials for implementation in real pavements, although their rate of hardening needs to be improved further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.