Abstract

The structure and porosity of Cr/silica catalysts has a strong influence on its activity in ethylene polymerization and on the character of the polymer it produces. In this study, silicas of widely varying physical structure were chosen so that the influence of surface area, pore volume, pore diameter, and coalescence could be independently investigated by monitoring the surface activity, the polymer molecular weight (MW), MW distribution, melt flow, and the amount of long-chain branching (LCB). The results are discussed with respect to (1) fragmentation of the silica during polymerization, and (2) egress of polymer from pores inside the resulting fragments. Pores of narrow diameter were found to inhibit polymer egress, resulting in lower surface participation, which in turn raised the molecular weight. Pores of wide diameter were found to produce relatively constant surface participation and polymer molecular weight, but increased the amount of LCB in the polymer. Variations in MW are seen as a function ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.