Abstract

One goal of biofabrication is to incorporate living cells into artificial scaffolds in order to repair damaged tissues or organs. Although there are many studies on various biofabrication techniques, the maintenance of cell viability during the biofabrication process and cell proliferation after the process is still a challenging issue. Construction of scaffolds using hydrogels composed of natural materials can avoid exposure of cells to harsh chemicals or temperature extremes but can still entail exposure to non-physiological conditions, causing cell damage or even death. This paper presents an experimental investigation into the influence on Schwann cell survival and proliferation of calcium used for ionic crosslinking of alginate hydrogel during the biofabrication process. The experimental results obtained show the viability and proliferation capacity of cells, either suspended in cell culture medium or encapsulated in hydrogel, and vary with the calcium concentration and the time period of cells exposed to the calcium environment. The experimental results also show the alginate concentration and cell density, that have profound influence on cell survival and proliferation, and solution viscosity as well. This study suggests the incorporation of living cells in calcium-crosslinked hydrogel in the biofabrication process can be regulated for controlled cell survival and proliferation.

Highlights

  • Biofabrication aims to incorporate living cells into constructs such as the artificial scaffolds used to repair damaged tissues or organs

  • The number of living cells treated with 100 mM calcium solution significantly increased 80% after 24 hours because of the recovery of damaged cells, while the ones in [Ca2+] 1 M group continued to decrease to its 50%, in which most cells were dying within that time period

  • The proliferation rates of the cells treated with the lower calcium concentration were lower than those in the Dulbecco’s Modified Eagle Medium (DMEM) control group, the increase in number showed that the surviving cells were functionally active

Read more

Summary

Introduction

Biofabrication aims to incorporate living cells into constructs such as the artificial scaffolds used to repair damaged tissues or organs. There are various potential sources for cell damage in dispensing process, which makes the incorporation and manipulation of living cells a challenging task [1, 2]. Previous studies have investigated the influence of process-induced mechanical force on cell damage/survival [3, 4]. Both decreasing nozzle diameter and increasing applied dispensing air pressure were found to increase mechanical stresses, decreasing cell viability. In order to achieve the goal of incorporating living cells into artificial tissue scaffolds, research into the cell damage caused by other sources during and after the fabrication process is essential

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.