Abstract

Glycerol metabolism is a typical biological oxidoreductive reaction. 1,3-Propanediol (1,3-PD) is the final product of the reductive branch, while acetate, succinate, lactate, 2,3-butanediol (2,3-BD), and ethanol were produced in the oxidative branch. 2,3-BD, which has similar properties of high boiling point and water solubility with 1,3-PD, not only contests the carbon flow and NADH with 1,3-PD but also serves as an obstacle for obtaining high purity 1,3-PD in downstream processes. In this study, a 2,3-BD pathway-deficient mutant of Klebsiella oxytoca ZG36 was constructed by knocking out the budA gene of the wild-type strain M5al. The results of fed-batch fermentation by ZG36 indicated that the glycerol flux and the distribution of metabolites were altered in the K. oxytoca when the 2,3-BD pathway was blocked. No 2,3-BD was produced, and the activity of α-acetolactate decarboxylase (α-ALDC) can not be detected in the fermentation processes. The indexes of the 1,3-PD titer, the conversion from glycerol to 1,3-PD, and the productivity per cell dry weight (CDW) increased by 42%, 62%, and 46%, respectively, compared with the M5al, and the yield of the byproducts also increased obviously. The assay of the enzyme activities in the oxidative branch and the reductive branch of the glycerol metabolism, as well as the intracellular redox state, exposited the results logically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.