Abstract
A total of 8 beany odor-active compounds and 4 non-beany aroma-active compounds of traditional soymilk were identified through dynamic headspace dilution analysis (DHDA) and gas chromatography-olfactometry-mass spectrometry (GC-O-MS). To eliminate the beany flavors, soymilk was processed with hot water blanching and grinding for 2, 4, 6, 8, and 10 min with a temperature between 80 and 100 °C. A total of 5 beany odor-active compounds and 3 non-beany aroma-active compounds of this soymilk were analyzed by headspace solid phase microextraction (HS-SPME). As a result, lipoxygenase (LOX) activity gradually decreased by hot water treatment with time, and with the decrease of Lox activity, the 5 beany odor-active compounds and 3 non-beany aroma-active compounds were significantly decreased. However, the reduction in non-beany flavor compounds was smaller than for beany odor compounds. Therefore, a balance between beany and non-beany flavors can be reached in soymilk. When the soaked soybeans were blanched and ground with hot water for 2 to 6 min, the LOX activity was between 38% and 57% of the beginning activity. For these processing times, the non-beany compounds could be largely maintained. The ratio of the total peak area of the 3 non-beany aroma compounds and 5 beany flavor compounds was between 0.07 and 0.12, and the sensory scores of the aromas were higher than that of the off-flavors. Practical Application: Beany flavors in soymilk could be reduced with hot water blanching and grinding at temperature above 80 °C. However, the treatment of hot water blanching affected the non-beany aromas of soymilk. A suitable blanching and grinding time is necessary to achieve a balance of soymilk flavors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.