Abstract
The physiological and biochemical signals that induce stress protein (HSP) synthesis remain conjectural. In this study, we used the nucleated red blood cells from rainbow trout, Oncorhynchus mykiss, to address the interaction between energy status and HSP gene expression. Heat shock (25 degrees C) did not significantly affect ATP levels but resulted in an increase in HSP70 mRNA. Hypoxia alone did not induce HSP transcription in these cells despite a significant depression in ATP. Inhibition of oxidative phosphorylation with azide, in the absence of thermal stress, decreased ATP by 56% and increased lactate production by 62% but did not induce HSP gene transcription. Inhibition of oxidative phosphorylation and glycolysis with azide and iodoacetic acid respectively, decreased ATP by 79% and prevented lactate production, but did not induce either HSP70 or HSP30 gene transcription in these cells. This study demonstrates that a reduction in the cellular energy status will not induce stress protein gene transcription in rainbow trout red blood cells and may, in fact, limit induction during extreme metabolic inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.