Abstract

A conceptual model connecting seasonal loss of Arctic sea ice to midlatitude extreme weather events is applied to the 21st-century intensification of Central Pacific trade winds, emergence of Central Pacific El Nino events, and weakening of the North Pacific Aleutian Low Circulation. According to the model, Arctic Ocean warming following the summer sea-ice melt drives vertical convection that perturbs the upper troposphere. Static stability calculations show that upward convection occurs in annual 40- to 45-d episodes over the seasonally ice-free areas of the Beaufort-to-Kara Sea arc. The episodes generate planetary waves and higher-frequency wave trains that transport momentum and heat southward in the upper troposphere. Regression of upper tropospheric circulation data on September sea-ice area indicates that convection episodes produce wave-mediated teleconnections between the maximum ice-loss region north of the Siberian Arctic coast and the Intertropical Convergence Zone (ITCZ). These teleconnections generate oppositely directed trade-wind anomalies in the Central and Eastern Pacific during boreal winter. The interaction of upper troposphere waves with the ITCZ air-sea column may also trigger Central Pacific El Nino events. Finally, waves reflected northward from the ITCZ air column and/or generated by triggered El Nino events may be responsible for the late winter weakening of the Aleutian Low Circulation in recent years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.