Abstract

Nickel oxide (NiO) nanosheet films were successfully grown onto NiO seed-coated glass substrates at different annealing temperatures for humidity sensing applications. NiO seed layers and NiO nanosheet films were prepared using a sol-gel spin coating and sonicated sol-gel immersion techniques, respectively. The properties of NiO nanosheet films at as-deposited, 300 ℃, and 500 ℃-annealed were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-vis) spectroscopy, and humidity sensor measurement system. The XRD patterns demonstrate that the grown NiO films have crystalline cubic structures at temperature of 300 ℃ and 500 ℃. The FESEM images show that the large porous nanosheet network spread over the layers as the annealing temperature increased. The UV-vis spectra revealed that all the nanosheet films have the average transmittance below than 50% in the visible region, with absorption edges ~ 350 nm. The optical band gap energy was evaluated in ranges of 3.39 to 3.61 eV. From the obtained humidity sensing results, it shows that 500 ℃-annealed film exhibited the best sensitivity of 257, as well as the slowest response time, and the fastest recovery time compared with others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.