Abstract

The nature of crystallographic reactive sites on the lepidocrocite (γFeOOH) surface has been determined by atomic force microscopy (AFM) and extended X-ray absorption fine structure (EXAFS) spectroscopy and compared to the surface bonding properties of goethite. To this end, the specific surface areas of lepidocrocite particles, and of their crystal faces, were calculated from the size and shape of individual particles determined by AFM, and the structure of Cd surface complexes was determined from Cd–Fe EXAFS distances. The combined results show that Cd forms solely mononuclear surface complexes, even at 100% surface coverage, and that hydrated Cd octahedra sorb on basal {010} and lateral {hk0}, {h0l} faces of lepidocrocite platelets by sharing edges with surface Fe octahedra. The absence, or scarcity, of corner-sharing linkage between Fe and Cd octahedra on the surface of lepidocrocite is in contrast to goethite (αFeOOH), where this type of complex is predominant. The explanation for the observed difference of Cd sorption mechanism on these two polymorphs lies not in the shape and relative surface area of their crystallographic faces, but in their different bulk structures and, specifically, in the stacking mode of anion layers (O2−, OH−) which is hexagonal in αFeOOH and cubic in γFeOOH. This study demonstrates that the stacking mode of anions in the sorbent solid is a key factor in determining the structure of surface complexes on mineral surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.