Abstract

The paper presents the impact of a surface treatment (an aluminizing process) on the microstructure and tensile strength of the nickel superalloy IN 718 produced by Selective Laser Melting (SLM). The aluminizing process was carried out by means of chemical vapor deposition with the participation of AlCl3 vapors, in a hydrogen atmosphere as the carrier gas The microstructure of the nickel superalloy IN 718 after 3D printing and thermo-chemical treatment was observed through a optical microscope and an electron scanning microscope. X-ray diffraction made it possible to analyze the phase composition and to determine the residual stresses (sin2Ψ method). Moreover, it was found that the material had a crystalline texture. A static tensile test was carried out on a Zwick/Roell Z005 testing machine. On the basis of the tests, it was ascertained that, with SLM and an appropriate selection of technological parameters, it is possible to obtain a nickel superalloy IN 718 characterized by a fine column microstructure and crystal dendrites. The samples of the nickel superalloy IN 718 produced featured a high strength, similar to that of nickel superalloy IN 718 produced by conventional methods. It was also shown that an aluminizing process carried out by the CVD method makes it possible to attain an intermetallic layer mainly comprised of a AlNi phase characterized by compressive residual stresses. The tensile strength tests proved that the aluminizing process reduced the strength of the nickel alloy IN 718.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.