Abstract

Inhaled and deposited man-made vitreous fibers (MMVF) 10a (low-fluorine preparation of Schuller 901 insulation glass) were studied by electron microscopy in hamster lungs, fixed by intravascular perfusion within 23 +/- 2 min (SD) of the initial inhalation. We found fibers on the surfaces of conducting airways and alveoli. In the airways, 89% of the fibers were totally and 11% partially covered by lining-layer material. In the alveoli, 32% of the fibers were totally submersed; others touched the alveolar wall, stuck at one end, bridging the airspace. Studies in a surface balance showed that fibers were immersed into the aqueous subphase by approximately 50% at film surface tensions of 20-25 mJ/m2) and were submersed (totally immersed; i.e., totally surrounded by fluid) at approximately 10 mJ/m2). Fibers were also found to be phagocytosed by macrophages. We found a substantial number of particle profiles within alveolar blood capillaries. Fiber length and alveolar geometry appear to be important limiting factors for the submersion of vitreous fibers into the lungs' surface lining layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.