Abstract

We used an integrated approach to determine the effects of soil particle architecture and minerals on living habitats and soil organic matter (SOM). Macroaggregate (> 250 µm), microaggregate 1 (50–250 µm), and microaggregate 2 (< 50 µm) fractions of adjacent forested and cultivated Gleysolic soil were obtained by wet sieving. The forested site was used as a reference to evaluate the effects of cultivation on soil particle architecture. Aggregates and respective clay fractions were characterized using optical, chemical, physical and microbial methods. Microaggregates 1 had primary particles with the largest mean equivalent spherical diameter (ESD) and void volume of all aggregate fractions. These physical characteristics were paralleled by the highest SOM and microbial biomass content, and number of microorganisms. Cultivation increased the weathering of primary particles and SOM loss, and decreased the content of microbial pools, suggesting deteriorated living habitats. Soil organic C content in aggregates correlated significantly with the amount of ammonium oxalate extractable Al, chloritized vermiculite, and vermiculite, and was inversely associated with the total clay content. The mean ESD of primary particles and expandable phyllosilicates of aggregates influenced living habitats by supplying substrates, and providing different void and protective space for soil microorganisms. Key words: Aggregate, mean equivalent spherical diameter, bacteria, fungi, actinomycetes, microbial biomasss, organic carbon, vermiculite, non-crystalline inorganic soil components

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.