Abstract

Abstract In this account, polycrystalline La0.7(Ca0.27Sr0.03)MnO3:Ag0.2 (LCSMO:Ag) ceramics were synthesized by the sol-gel method followed by solid-state doping. The Ag amounts doped into grain boundary and cell lattice could be adjusted by changing the sintering temperature from 1000 °C to 1500 °C. The temperature coefficient of resistivity (TCR) and magnetoresistance (MR) of the obtained LCSMO:Ag ceramics were tested under cross magnetic field with directions parallel and perpendicular to the flat of bulk. The difference between TCR and MR values reached their maxima at sintering temperature of 1450 °C, meaning that degree of lattice distortion reached maximum value. The combined data from X-ray diffraction (XRD) and scanning electron microscopy (SEM) demonstrated that Ag was doped into the grain boundary and lattice cell, and Ag played an important role during the process. The influence of Ag-doping on TCR and MR suggested that degree of lattice distortion can be adjusted by doping, leading to change in isotropic ceramics into anisotropic ceramics without damage. Application of parallel magnetic fields shifted the application temperature to room temperature, and response sensitivity of the ceramics to magnetic field further increased. Overall, these findings look promising for future applications in photoelectric and magnetic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.