Abstract

This paper reports results on the effect of interaction of Ag(+) on 1D droplet array spacing and the repulsive forces between stimuli-responsive nanoemulsion droplets, stabilized with an anionic surfactant--sodium dodecyl sulfate--and a diblock polymer--poly(vinyl alcohol)-vinyl acetate. The repulsive interaction is probed by measuring the in-situ equilibrium force-distance in the presence of Ag(+) using the magnetic chaining technique. At a constant static magnetic field, emulsion droplets form 1D array that diffract visible light. A large blue-shift in the diffracted light is observed in the presence of interacting Ag(+) because of the reduction in the interdroplet spacing within the 1D array. The in-situ equilibrium force-distance measurement results show that the onset of repulsions and magnitude of repulsive forces are strongly influenced by the presence of Ag(+) in ppb levels. This suggests that the Ag(+) ions screen the surface charges through the formation of both Stern and diffuse electric double layer and produces a dramatic blue-shift in surfactant-stabilized emulsion, whereas a dramatic conformational change in the adsorbed polymer layer causes a reduction in the 1D array spacing in the diblock polymer stabilized emulsion. The force-distance results are compared with the predictions of electrical double-layer and repulsive steric forces. The droplet array shows an excellent selectivity to Ag(+) due to the strong interaction of Ag(+) with the stabilizing moieties at the oil-water interface. The possible mechanisms of interaction of Ag(+) with surfactant and polymer are discussed. The dramatic decrease in the 1D array spacing in the presence of Ag(+) may find promising practical applications in the development of optical sensors for selective detection of cations with ultrahigh sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.