Abstract

The impact of acid incorporation (acetic + lactic, 0.5%) into rice starch-based doughs enriched with different proteins (egg albumin, calcium caseinate, pea protein and soy protein isolates) at different doses (0, 5 and 10%) has been investigated on dough viscoelastic and pasting profiles. Oscillatory (stress and frequency sweeps) and creep-recovery tests were used to characterize the fundamental viscoelastic behaviour of the doughs, and thermomechanical assays were performed to assess dough viscometric performance. Supplementation of gluten-free doughs with proteins from vegetal sources led to more structured dough matrices (higher viscoelastic moduli and steady viscosities, and lower tan δ, instantaneous and retarded elastic compliances) effect being magnified with protein dose. Acid addition decreased these effects. Incorporation of proteins from animal source resulted in different viscoelastic behaviours according to the protein type, dosage and acidification, especially for casein. Acidification conferred lower dough deformation and notably higher steady viscosity and viscoelastic moduli for 5 %-casein-added dough. Protein-acid interaction favoured higher viscosity profiles, particularly for doughs with proteins of vegetable origin and lower dosage. Dough acidification decreased the pasting temperatures and the amylose retrogradation. Acidification of protein-enriched rice-starch doughs allowed manipulation of its viscometric and rheological properties which is of relevant importance in gluten-free bread development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.