Abstract

An influence of backward reflection on spatio-temporal instability of the fundamental mode in Yb3+-doped few-mode polarization maintaining fiber amplifiers with a core diameter of 10 μm was studied experimentally and theoretically. The mode instability threshold was registered to decrease dramatically in the presence of a backward reflection of the signal from the output fiber end; an increase of the signal bandwidth or input power resulted in the increase of the threshold. Numerical simulation revealed a self-consistent growth of the higher-order mode LP11 and a traveling index grating accompanying the population grating induced by the mode interference field (due to different polarizability of the excited and unexcited Yb3+ ions). The presence of the backward-propagating wave resulted in four-wave mixing on the common index grating induced by the interference field of pairs of the fundamental LP01 and LP11 modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.