Abstract

In-hospital outcomes are generally acceptable with the conservative treatment of uncomplicated type B aortic dissection, but some patients present with undesirable complications, such as aortic expansion and rupture. Beyond mechanical and shear forces of blood flow affecting the weakened aortic wall, excessive inflammatory response has been shown to be associated with aortic expansion and adverse clinical outcomes. We have previously demonstrated the underlying mechanisms of catastrophic complications after acute aortic dissection (AAD) in mice. We propose that aortic dissection induces expression of the neutrophil chemoattractants CXCL1 and granulocyte-colony stimulating factor in the aortic tunica adventitia. These local environmental changes recruit neutrophils in combination with alteration of bone marrow milieu where reduced CXCL12 expression enhances neutrophil egress. Interleukin (IL)-6 production in the inflammatory adventitial neutrophils causes vascular inflammation, leading to vascular wall fragility. Targeting CXCR2 or IL-6 mitigates aortic expansion and prevents mice from aortic rupture. Collectively, adventitial neutrophil-mediated inflammation may be a potential therapeutic target to limit lethal complications after AAD.

Highlights

  • Acute aortic dissection (AAD) is a life-threatening vascular disease initiated by a tear in the aortic intima[1]

  • We propose that aortic dissection induces expression of the neutrophil chemoattractants CXCL1 and granulocyte-colony stimulating factor in the aortic tunica adventitia

  • Previous preclinical studies have focused on the mechanisms for acute aortic dissection (AAD) initiation via traditional mouse models, which depend on long-term infusion of angiotensin II (AngII) in ApoE knockout or aged mice[10, 11]

Read more

Summary

Introduction

Acute aortic dissection (AAD) is a life-threatening vascular disease initiated by a tear in the aortic intima[1]. Beyond mechanical and shear forces of blood flow affecting the weakened aortic wall, excessive inflammatory response has been shown to be associated with aortic expansion and adverse clinical outcomes. We have previously demonstrated the underlying mechanisms of catastrophic complications after acute aortic dissection (AAD) in mice.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.