Abstract
Interleukin (IL)-1β is a key mediator of inflammation and activates via pattern recognition receptors (PRR) of the inflammasome family by proteolytic maturation. Proteolysis is driven by proteases such as caspase-1 (also known as IL-1 converting enzyme, ICE) and converts the intact pro-IL-1β ~31kDa pro-peptide into a mature, ~17kDa form that can exit cells through nanomolecular pores or via microvesicles. Whereas pro-IL-1β fails to trigger IL-1 receptor (IL-1R) activation, mature IL-1β, upon release from the cell, triggers pleiotropic downstream effects, establishing an inflammatory state. Hence, being able to detect IL-1β conversion is physiologically relevant for measuring inflammation, but it cannot be easily accomplished by conventional ELISA or flow cytometry as most commercially available antibodies do not discriminate mature and pro-form. Furthermore, unlike for other cytokines, the mere induction and translation of IL1B mRNA cannot serve as a proxy of inflammasome PRR activation. Rather the cleavage of IL-1β needs to be verified. Hence, conventional immunoblotting has emerged as the gold standard for demonstrating inflammasome activation as the difference in molecular weight between pro- and mature form can easily be detected. However, conventional immunoblotting suffers from poor standardization, quantification, and reproducibility, may require sample concentration, and is also not suitable for medium to high throughput. Some of these shortcomings are prohibitive for analysis of human primary samples but can be overcome by fully automated capillary-based immunoassay as we outline here. We here provide a practical guide to quantify pro- vs mature IL-1β directly from unconcentrated supernatants of human monocyte-derived macrophages. The assay may be useful for more standardized and medium-throughput analysis in these cells or other biospecimen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.