Abstract

Typically, aggregation-diffusion is modeled by parabolic equations that combine linear or nonlinear diffusion with a Fokker-Planck convection term. Under very general suitable assumptions, we prove that radial solutions of the evolution process converge asymptotically in time towards a stationary state representing the balance between the two effects. Our parabolic system is the gradient flow of an energy functional, and in fact we show that the stationary states are minimizers of a relaxed energy. Here, we study radial solutions of an aggregation-diffusion model that combines nonlinear fast diffusion with a convection term driven by the gradient of a potential, both in balls and the whole space. We show that, depending on the exponent of fast diffusion and the potential, the steady state is given by the sum of an explicit integrable function, plus a Dirac delta at the origin containing the rest of the mass of the initial datum. This splitting phenomenon is an uncommon example of blow-up in infinite time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.