Abstract

We explore the geometry of isothermic meshes, conical meshes, and asymptotic meshes around the Christoffel dual construction of a discrete minimal surface. We present a discrete Legendre transform which realizes discrete minimal surfaces as conical meshes. Conical meshes turn out to be infinitesimally flexible if and only if their spherical image is isothermic, which implies that discrete minimal surfaces constructed in this way are infinitesimally flexible, and therefore possess reciprocal-parallel meshes. These are discrete minimal surfaces in their own right. In our study of relative kinematics of infinitesimally flexible meshes, we encounter characterizations of flexibility and isothermicity which are of incidence-geometric nature and are related to the classical Desargues configuration. The Lelieuvre formula for asymptotic meshes leads to another characterization of isothermic meshes in the sphere which is based on triangle areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.