Abstract

We investigate the existence of certain types of equilibria (Nash, e-Nash, subgame perfect, e-subgame perfect) in infinite sequential games with real-valued payoff functions depending on the class of payoff functions (continuous, upper semi-continuous, Borel) and whether the game is zero-sum. Our results hold for games with two or up to countably many players. Several of these results are corollaries of stronger results that we establish about equilibria in infinite sequential games with some weak conditions on the occurring preference relations. We also formulate an abstract equilibrium transfer result about games with compact strategy spaces and open preferences. Finally, we consider a dynamical improvement rule for infinite sequential games with continuous payoff functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.