Abstract
We consider problems of the following type. Assign independently to each vertex of the square lattice the value +1, with probability p, or −1, with probability 1 −p. We ask whether an infinite path π exists, with the property that the partial sums of the ±1s along π are uniformly bounded, and whether there exists an infinite path π' with the property that the partial sums along π' are equal to zero infinitely often. The answers to these question depend on the type of path one allows, the value of p and the uniform bound specified. We show that phase transitions occur for these phenomena. Moreover, we make a surprising connection between the problem of finding a path to infinity (not necessarily self-avoiding, but visiting each vertex at most finitely many times) with a given bound on the partial sums, and the classical Boolean model with squares around the points of a Poisson process in the plane. For the recurrence problem, we also show that the probability of finding such a path is monotone in p, for p≥½.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.