Abstract
In this work, we concern ourselves with the existence of optimal solutions to optimal control problems defined on an unbounded time interval with states governed by a nonlinear Volterra integral equation. These results extend both the work of Baum and others in infinite-horizon control of ordinary differential equations as well as the work of Angell concerning integral equations. In addition, we incorporate into the objective functional (described by an improper integral) a discount factor which reflects a hereditary dependence on both state and control. In this manner, we are able to generalize the recent results of Becker, Boyd, and Sung in which they establish an existence theorem in the calculus of variations with objective functionals of the so-called recursive type. Our results are obtained through the use of appropriate lower-closure theorems and compactness conditions. Examples are presented in which the applicability of our results is demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.