Abstract

The Lyndon factorization of a string w is a unique factorization ℓ1p1,…,ℓmpm of w such that ℓ1,…,ℓm is a sequence of Lyndon words that is monotonically decreasing in lexicographic order. In this paper, we consider the reverse-engineering problem on Lyndon factorization: Given a sequence S=((s1,p1),…,(sm,pm)) of ordered pairs of positive integers, find a string w whose Lyndon factorization corresponds to the input sequence S, i.e., the Lyndon factorization of w is in a form of ℓ1p1,…,ℓmpm with |ℓi|=si for all 1≤i≤m. Firstly, we show that there exists a simple O(n)-time algorithm if the size of the alphabet is unbounded, where n is the length of the output string. Secondly, we present an O(n)-time algorithm to compute a string over an alphabet of the smallest size. Thirdly, we show how to compute only the size of the smallest alphabet in O(m) time. Fourthly, we give an O(m)-time algorithm to compute an O(m)-size representation of a string over an alphabet of the smallest size. Finally, we propose an efficient algorithm to enumerate all strings whose Lyndon factorizations correspond to S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.