Abstract
A spin system on a lattice can usually be modeled at large scales by an effective quantum field theory. A key mathematical result relating the two descriptions is the quantum central limit theorem, which shows that certain spin observables satisfy an algebra of bosonic fields under certain conditions. Here, we show that these particular observables and conditions are the relevant ones for an observer with certain limited abilities to resolve spatial locations as well as spin values. This is shown by computing the asymptotic behaviour of a quantum Fisher information metric as function of the resolution parameters. The relevant observables characterise the state perturbations whose distinguishability does not decay too fast as a function of spatial or spin resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.