Abstract

BackgroundDespite the introduction of targeted therapies, most patients with myeloid malignancies will not be cured and progress. Genomics is useful to elucidate the mutational landscape but remains limited in the prediction of therapeutic outcome and identification of targets for resistance. Dysregulation of phosphorylation-based signaling pathways is a hallmark of cancer, and therefore, kinase-inhibitors are playing an increasingly important role as targeted treatments. Untargeted phosphoproteomics analysis pipelines have been published but show limitations in inferring kinase-activities and identifying potential biomarkers of response and resistance.MethodsWe developed a phosphoproteomics workflow based on titanium dioxide phosphopeptide enrichment with subsequent analysis by liquid chromatography tandem mass spectrometry (LC-MS). We applied a novel Kinase-Activity Enrichment Analysis (KAEA) pipeline on differential phosphoproteomics profiles, which is based on the recently published SetRank enrichment algorithm with reduced false positive rates. Kinase activities were inferred by this algorithm using an extensive reference database comprising five experimentally validated kinase-substrate meta-databases complemented with the NetworKIN in-silico prediction tool. For the proof of concept, we used human myeloid cell lines (K562, NB4, THP1, OCI-AML3, MOLM13 and MV4–11) with known oncogenic drivers and exposed them to clinically established kinase-inhibitors.ResultsBiologically meaningful over- and under-active kinases were identified by KAEA in the unperturbed human myeloid cell lines (K562, NB4, THP1, OCI-AML3 and MOLM13). To increase the inhibition signal of the driving oncogenic kinases, we exposed the K562 (BCR-ABL1) and MOLM13/MV4–11 (FLT3-ITD) cell lines to either Nilotinib or Midostaurin kinase inhibitors, respectively. We observed correct detection of expected direct (ABL, KIT, SRC) and indirect (MAPK) targets of Nilotinib in K562 as well as indirect (PRKC, MAPK, AKT, RPS6K) targets of Midostaurin in MOLM13/MV4–11, respectively. Moreover, our pipeline was able to characterize unexplored kinase-activities within the corresponding signaling networks.ConclusionsWe developed and validated a novel KAEA pipeline for the analysis of differential phosphoproteomics MS profiling data. We provide translational researchers with an improved instrument to characterize the biological behavior of kinases in response or resistance to targeted treatment. Further investigations are warranted to determine the utility of KAEA to characterize mechanisms of disease progression and treatment failure using primary patient samples.Graphical abstract

Highlights

  • Despite the introduction of targeted therapies, most patients with myeloid malignancies will not be cured and progress

  • We provide translational researchers with an improved instrument to characterize the biological behavior of kinases in response or resistance to targeted treatment

  • Further investigations are warranted to determine the utility of KinaseActivity Enrichment Analysis (KAEA) to characterize mechanisms of disease progression and treatment failure using primary patient samples

Read more

Summary

Introduction

Despite the introduction of targeted therapies, most patients with myeloid malignancies will not be cured and progress. Initiated by the advent of high-throughput next-generation sequencing (NGS), considerable effort has been devoted to investigate the genomes and transcriptomes of various cancers, including myeloid malignancies [1,2,3] These initiatives aimed for a better understanding of individual’s disease biology, identification of prognostic as well as predictive biomarkers and lead to the development of targeted treatments according to the patients’ molecular profiles (precision medicine) [4, 5]. The evolution of bioinformatics contributed to this development and allowed to reduce the complexity of the data and characterize novel biological clusters [7, 8] Despite these indisputable achievements of genomics, our understanding of functional biology remains limited

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.