Abstract

The evaluation of ring vaccination and other outbreak-containment interventions during severe and rapidly-evolving epidemics presents a challenge for the choice of a feasible study design, and subsequently, for the estimation of statistical power. To support a future evaluation of a case-area targeted intervention against cholera, we have proposed a prospective observational study design to estimate the association between the strength of implementation of this intervention across several small outbreaks (occurring within geographically delineated clusters around primary and secondary cases named 'rings') and its effectiveness (defined as a reduction in cholera incidence). We describe here a strategy combining mathematical modelling and simulation to estimate power for a prospective observational study. The strategy combines stochastic modelling of transmission and the direct and indirect effects of the intervention in a set of rings, with a simulation of the study analysis on the model results. We found that targeting 80 to 100 rings was required to achieve power ≥80%, using a basic reproduction number of 2.0 and a dispersion coefficient of 1.0-1.5. This power estimation strategy is feasible to implement for observational study designs which aim to evaluate outbreak containment for other pathogens in geographically or socially defined rings.

Highlights

  • Fast and efficient disease control approaches are critical for controlling cholera epidemics

  • To support a future evaluation of a case-area targeted intervention against cholera, we have proposed a prospective observational study design to estimate the association between the strength of implementation of this intervention across several small outbreaks and its effectiveness

  • This power estimation strategy is feasible to implement for observational study designs which aim to evaluate outbreak containment for other pathogens in geographically or socially defined rings

Read more

Summary

Background

The evaluation of ring vaccination and other outbreak-containment interventions during severe and rapidly-evolving epidemics presents a challenge for the choice of a feasible study design, and subsequently, for the estimation of statistical power. To support a future evaluation of a case-area targeted intervention against cholera, we have proposed a prospective observational study design to estimate the association between the strength of implementation of this intervention across several small outbreaks (occurring within geographically delineated clusters around primary and secondary cases named ‘rings’) and its effectiveness (defined as a reduction in cholera incidence). We describe here a strategy combining mathematical modelling and simulation to estimate power for a prospective observational study. The R code for the simulations is available here: https://github.com/ruwanepi/CATIpower-sim-shared.git

Methodology and principal findings
Conclusions
Author summary
Introduction
Methods
Summary and rationale for the simulation
Findings
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.