Abstract
Accurate prediction of a newborn’s birth weight (BW) is a crucial determinant to evaluate the newborn’s health and safety. Infants with low BW (LBW) are at a higher risk of serious short- and long-term health outcomes. Over the past decade, machine learning (ML) techniques have shown a successful breakthrough in the field of medical diagnostics. Various automated systems have been proposed that use maternal features for LBW prediction. However, each proposed system uses different maternal features for LBW classification and estimation. Therefore, this paper provides a detailed setup for BW estimation and LBW classification. Multiple subsets of features were combined to perform predictions with and without feature selection techniques. Furthermore, the synthetic minority oversampling technique was employed to oversample the minority class. The performance of 30 ML algorithms was evaluated for both infant BW estimation and LBW classification. Experiments were performed on a self-created dataset with 88 features. The dataset was obtained from 821 women from three hospitals in the United Arab Emirates. Different performance metrics, such as mean absolute error and mean absolute percent error, were used for BW estimation. Accuracy, precision, recall, F-scores, and confusion matrices were used for LBW classification. Extensive experiments performed using five-folds cross validation show that the best weight estimation was obtained using Random Forest algorithm with mean absolute error of 294.53 g while the best classification performance was obtained using Logistic Regression with SMOTE oversampling techniques that achieved accuracy, precision, recall and F1 score of 90.24%, 87.6%, 90.2% and 0.89, respectively. The results also suggest that features such as diabetes, hypertension, and gestational age, play a vital role in LBW classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.