Abstract

We report the growth of Cu2SnS3 (CTS) thin films on F-doped SnO2 (FTO) glass substrates at room-temperature by low-cost electrodeposition technique using an aqueous medium without the evolution of hydrogen. Electrolyte concentration and deposition potential were optimized under the limits of water hydrolysis. As-deposited films are post-annealed in the presence of the sulphur flakes to establish the stoichiometry. The annealed films were found to contain high phase purity and favorable optical properties to be useful for the photovoltaic applications. Optical data reveal that the CTS films have direct optical bandgap of 1.25 eV with an absorption coefficient of the order of 104 cm[Formula: see text]. A photovoltaic cell architecture of Glass/FTO (back contact)/CTS/CdS/Al:ZnO/Al (front contact) exhibited an open circuit voltage of 28 mV, a short circuit current density of 8.4 [Formula: see text]A/cm2 and the fill factor of 25%. The absorber thickness optimization and the use of Mo-coated glass as a back contact improve the solar cell parameters. A further study in this aspect is under way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.