Abstract

The recovery of images from the observations that are degraded by a linear operator and further corrupted by Poisson noise is an important task in modern imaging applications such as astronomical and biomedical ones. Gradient-based regularizers involve the popular total variation semi-norm have become standard techniques for Poisson image restoration due to its edge-preserving ability. Various efficient algorithms have been developed for solving the corresponding minimization problem with non-smooth regularization terms. In this paper, motivated by the idea of the alternating direction minimization algorithm and the Newton's method with upper convergent rate, we further propose inexact alternating direction methods utilizing the proximal Hessian matrix information of the objective function, in a way reminiscent of Newton descent methods. Besides, we also investigate the global convergence of the proposed algorithms under certain conditions. Finally, we illustrate that the proposed algorithms outperform the current state-of-the-art algorithms through numerical experiments on Poisson image deblurring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.