Abstract

Pulsatile mock loop systems are largely used to investigate the cardiovascular system in vitro. They consist of a pump, which replicates the heart, coupled with a lumped-parameter hydraulic afterload, which simulates vasculature. An accurate dimensioning of components is required for a reliable mimicking of the physiopathological behavior of the system. However, it is not possible to create a component for the afterload inertance, and inertance contributions are present in the entire circuit. Hence, in the literature, inertance is neglected or qualitatively evaluated. In this paper, we propose two quantitative methods (Maximum-likelihood estimation (MLE) and Bayesian estimation) for estimating afterload inertance based on observed pressure and flow waveforms. These methods are also applied to a real mock loop system. Results show that the system has an inertance comparable with the literature reference value of the entire systemic circulation, and that the expected variations over inlet average flow and pulse frequency are in general confirmed. Comparing the methods, the Bayesian approach results in higher and more stable estimations than the classical MLE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.