Abstract
In this chapter we deduce several functional inequalities for generalized Bessel functions of the first kind, Gaussian and Kummer hypergeometric functions as well as for general power series with positive coefficients. We present extensions to Bessel functions of some known trigonometric inequalities like Jordan, Cusa, van der Corput, Redheffer, Mahajan, Mitrinovic. Moreover, we establish some Grunbaum, Askey and Landen type inequalities for generalized Bessel functions. The methods used to derive these inequalities are based on classical analysis. Among others, we use a criterion for the monotonicity of the quotient of two MacLaurin series and the monotone form of l’Hospital’s rule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.