Abstract

The inelastic stopping is studied for deuterons in the Al plasmas with a fixed density 0.02 g cm−3 at 7 different temperatures from 2.7 to 64 eV within the projectile energy range from 100 keV u−1 to 10 MeV u−1 from our model (He and Wang 2014 Phys. Plasmas 21 063111). All the results are compared in detail with those from the isolated ion model where all the bound electrons are assumed in the ground state and the target ions are in almost the same charge states as those in the plasmas. The relativistic plane wave Born approximation is tested by much improved methods and found to be able to describe well the inelastic processes in the plasmas. The relevant result of the inelastic stopping is found to reflect the joint effect of the transition probability, electron occupation number and transition energy. It is found that the transitions of the deeply bound states play a dominant role to the inelastic stopping in the two models. The results due to all the excitation and de-excitation and those due to all the ionization and three body recombination in the plasmas are usually lower and higher than those for the corresponding isolated ions, respectively. It is demonstrated that models with target ions in the ground state could agree well with experiments in plasmas at a high enough projectile energy provided by a proper choice of the charge state of the target ion. The obvious difference between our model and Casas et al's model (Casas et al 2013 Phys. Rev. E 88 033102) is seen for the stopping with the projectile energy around 100 keV u−1 due to the different physical picture underlying them, which is helpful to probe which model proves more reliable in future experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.