Abstract

The overall objective of this study was to evaluate an advanced oxidation process (AOP) used to treat oil and grease (O&G), total petroleum hydrocarbons (TPH), and chemical oxygen demand (COD) of industrial wastewaters generated during barge cleaning operations. This wastewater generally contains appreciable concentrations of O&G, TPH, COD, biochemical oxygen demand (BOD) and benzene, toluene, ethylbenzene and xylene (BTEX) compounds. A bench scale AOP test unit was designed and built for the treatment of the barge cleaning industrial wastewater. The AOP test unit was a 0.33 gpm mobile, modular unit consisting of two contact chambers, two counter current columns and two catalytic chambers. Six experiments were performed using the AOP unit to determine its effectiveness on the reduction of O&G, TPH, and COD. The wastewater was delivered to the AOP from a storage tank. The unit was run for a total of 120 minutes at various gas delivery rates of ozone for each treatment run. Influent and effluent samples were collected at 30 minutes intervals and analyzed for O&G, TPH, and COD. Significant reductions in O&G and TPH concentrations were observed. Oxygen alone indicated a 50% removal efficiency for O&G and TPH. The ozone treatment efficiency was 86 % for O&G and TPH at a dosage rate of 12 SCFH and 82 % for a dosage rate of 6 SCFH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.