Abstract

We used purified mammalian topoisomerases I (top1) and oligonucleotides to study top1-mediated cleavage and religation in the presence of a potent carcinogenic adduct, 1,N6-ethenoadenosine (epsilonA) incorporated immediately downstream of a unique top1 cleavage site. We found tha epsilonA markedly enhanced top1 cleavage complexes when it was incorporated at the +1 position of the top1 cleavage. This enhancement was due to a reduction of the religation step of the top1 reaction. In addition, epsilonA reduced the top1-mediated cleavage and decreased binding of the enzyme to DNA. We also studied the effects of the epsilonA adduct on top1 trapping by camptothecin (CPT), a well known top1 inhibitor. CPT was inactive when epsilonA was present at the +1 position. Alkylation of the top1 cleavage complex by 7-chloromethyl-10,11-methylenedioxycamptothecin (7-ClMe-MDO-CPT) was also blocked by the epsilonA adduct. Altogether, these results demonstrate that the epsilonA carcinogenic adduct can efficiently trap human top1 and mimic CPT effects. Normal hydrogen bonding of the base pairs immediately downstream from the top1 cleavage site is probably essential for efficient DNA religation and binding of camptothecins in the top1 cleavage complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.