Abstract

Garden impatiens (Impatiens walleriana), a very important floricultural crop in the United States, has been devastated by impatiens downy mildew (IDM) in recent years. This study was conducted to determine if induced tetraploidy could improve impatiens resistance to downy mildew. Tetraploids were induced by colchicine and confirmed by chromosome counting. Compared with diploids, induced tetraploids showed significant morphological changes, including larger and thicker leaves with larger and fewer stomata; thicker and fewer stems; larger and fewer flowers; and larger pollen grains with higher stainability. In detached leaf and in vivo inoculation assays, tetraploids exhibited improved downy mildew resistance, with lower disease severity, disease incidences, and sporangia densities. Plasmopara obducens, the causal agent of IDM, underwent a similar development process in the leaf tissue of diploids and tetraploids. These results suggest that induced tetraploidy can result in significant changes in impatiens leaf and plant morphology and can increase impatiens resistance to downy mildew to a certain extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.