Abstract

Chromosomal translocation is a key process in the oncogenic transformation of somatic cells. Previously, artificial induction of chromosomal translocation was performed using homologous recombination-mediated loxP labeling of target regions followed by Cre-mediated recombination. Recent progress in genome editing techniques has facilitated the easier induction of artificial translocation by cutting two targeted genome sequences from different chromosomes. The present study established a system to induce t(11;14)(q13;q32), which is observed primarily in multiple myeloma (MM) and involves the repositioning of the cyclin D1 (CCND1) gene downstream of the immunoglobulin heavy chain (IgH) constant region enhancers by translocation. The placing of tandem gRNAs designed to cut both the IgH Eµ and CCND1 15-kb upstream regions in lentiCRISPRv2 enabled the induction of chromosomal translocation in 293T cells, with confirmation by translocation-specific PCR and fluorescence in situ hybridization probing with IgH and CCND1. At the translocation junctions, small deletions and the addition of DNA sequences (indels) were observed in several clones. Cloned cells with t(11;14) exhibited slower growth and lower CCND1 mRNA expression compared to the parent cells, presenting the opposite phenomena induced by t(11;14) in MM cells, indicating that the silent IgH gene juxtaposed to CCND1 may negatively affect CCND1 gene expression and cell proliferation in the non-B lymphocyte lineage. Therefore, the present study achieved the induction of silent promoter/enhancer translocation in t(11;14)(q13;q32) as a preparatory experiment to study the role of IgH constant region enhancer-driven CCND1 overexpression in oncogenic transformation processes in B lymphocytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.