Abstract
The availability of monocyte cell lines that can be induced to differentiate in a predictable fashion can provide important tools for the study of the biochemical mechanisms of specific cellular responses. The U937 human monocyte cell line was previously shown to differentiate into chemotactically responsive cells when incubated with supernatants of lectin-stimulated lymphocytes (conditioned medium). Considering the heterogeneous nature of stimulated lymphocyte supernatants, attempts were made to identify well-defined agents that could reproducibly induce U937 cell differentiation. Both dimethyl sulfoxide and dibutyryl cAMP induced expression of receptors for the N-formylated oligopeptide chemoattractants in U937 cells. Unstimulated U937 cells contained no detectable receptors. After cells were exposed to 1 mM dibutyryl cAMP, 1.3% dimethyl sulfoxide, or 5% conditioned medium for 72 h, the average number of oligopeptide chemoattractant receptors per U937 cell was 33,000, 4,000, and 3,400, respectively. Specific binding proteins for the chemoattractants were identified by covalent affinity labeling on the differentiated U937 cells as well as on normal human monocytes. Cells exposed to conditioned medium responded chemotactically, secreted lysosomal enzymes, and formed superoxide anion when incubated with the chemoattractant. Treatment of U937 cells with dibutyryl cAMP resulted in the most reproducible and rapid increase in the number of chemoattractant receptors as well as in chemotactic responsiveness. The receptors on dibutyryl cAMP-treated cells and on dimethyl sulfoxide-treated cells initiated chemotaxis and lysosomal enzyme secretion in response to chemoattractants, but not the formation of superoxide anion. These findings demonstrate that development of the chemotactic and respiratory burst functions during the differentiation of a monocyte-like cell line can occur independently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.