Abstract

Parkinson's disease (PD) is the second most common neurodegenerative disease in humans. The effect of Krüppel-like factor (KLF) 4 in PD is unknown. In this study, KLF4 was found to be increased in both a time-dependent manner and a dose-dependent manner in response to the incubation with 1-methyl-4-phenylpyridinium (MPP+) in human dopamine neuroblastoma M17 cells, suggesting a potential role in MPP + -induced neurotoxicity. Following experiments showed that overexpression of KLF4 in M17 cells promoted MPP + -induced oxidative stress, embodied by exacerbated reactive oxygen species, 4-hydroxy-2-nonenal, and protein carbonyls. Furthermore, overexpression of KLF4 slowed cell proliferation and promoted lactate dehydrogenase release. Conversely, inhibition of KLF4 in M17 cells attenuated MPP + -induced neurotoxicity. The expression of superoxide dismutase (SOD) 1 in both mRNA and protein levels was found to be decreased by overexpressing KLF4, while increased by knockdown of KLF4. Moreover, promoter luciferase experiments showed that transcriptional activity on SOD1 was inhibited by KLF4. All the results indicated that KLF4 promoted the neurotoxicity of MPP + via inhibiting the transcription of SOD1, suggesting a potential mechanism of increased oxidative stress and cell death in Parkinson's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.