Abstract

Interleukin-1 is a polypeptide factor with profound effects on several cell types, such as chondrocytes, fibroblasts, and T-cells. The ability of interleukin-1 to induce the synthesis of matrix-degradative enzymes, as well as prostaglandin E2, suggests a pivotal role for this mediator in chronic inflammation. Previous studies have shown that the effect of human monocyte interleukin-1 on the synthesis of collagenase and neutral proteases by chondrocytes was enhanced by basic fibroblast growth factor. Using recombinant human interleukin-1B, we have examined whether the potentiation of interleukin-1 effects by fibroblast growth factor is related to changes in the number or affinity of interleukin-1 receptors. Our studies confirm that rabbit articular chondrocytes in culture contain a single class of high-affinity receptors for interleukin-1 with a Ka of 0.9-1.1 x 10(-13) M-1. While the untreated chondrocytes contain approximately 1,620 receptors per cell, fibroblast growth factor-treated cells exhibit a higher number of receptors (approximately 2,960 per cell) with no apparent change in the affinity. The increase in receptor number can be abolished by inhibitors of lysosomal function, indicating a requirement for intracellular processing of the fibroblast growth factor. Our results suggest that the potentiation of interleukin-1 catabolic effects by fibroblast growth factor may be related to its ability to induce additional interleukin-1 receptors on the chondrocyte cell surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.