Abstract

ABSTRACT Short-chain fatty acids (C2-C9) induce fetal hemoglobin synthesis in primary cell cultures, primates, and patients. We carried out experiments to test whether relationships exist between chemical structure and the Hb F-inducing potential of several short-chain fatty acid derivatives. BFUe cultures were performed in the presence of propionic and butyric congeners, covering the full spectrum of substitutions of these molecules, including polar and non-polar groups, esters, and double bonds. We found that the fetal hemoglobin inducibility is related to the chemical structure of the inducing compound. This structure–activity relation depends on the length of carbon chain, the nature of the substitutions, and the position of more potent substitutions on the carbon chain. It appears that substitutions enhancing the inducibility of these compounds are (with decreasing potency): methyl > phenyl > hydroxy ⪢ amino groups. Placement of these substitutions at a position distal to the carboxyl group enhances γ-globin inducibility. Presence of the carboxyl group is prerequisite for γ-globin inducibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.