Abstract

Macrophages and dendritic cells (DCs) play essential roles in host defence against microbial infections. In the present study, it is shown that human monocyte-derived macrophages and DCs express both type I and type III interferons (IFNs) [IFN-alpha, IFN-beta and interleukin 28 (IL-28), IL-29, respectively], tumour necrosis factor alpha and the chemokines CCL5 and CXCL10 after herpes simplex virus 1 (HSV-1) infection. The cytokine-inducing activity of HSV-1 was dependent on viability of the virus, because UV-inactivated virus did not induce a cytokine response. Pretreatment of the cells with IFN-alpha or IL-29 strongly enhanced the HSV-1-induced cytokine response. Both IFN-alpha and IL-29 decreased viral immediate-early (IE) gene infected-cell protein 27 (ICP27) transcription, suggesting that IL-29 possesses antiviral activity against HSV-1 comparable to that of IFN-alpha. Macrophage infection with HSV-1 lacking functional ICP27 (d27-1 virus) resulted in strongly enhanced cytokine mRNA expression and protein production. In contrast, viruses lacking functional IE genes ICP0 and ICP4 induced cytokine responses comparable to those of the wild-type viruses. The activation of transcription factors IRF-3 and NF-kappaB was strongly augmented when macrophages were infected with the ICP27 mutant virus. Altogether, the results demonstrate that HSV-1 both induces and inhibits the antiviral response in human cells and that the type III IFN IL-29, together with IFN-alpha, amplifies the antiviral response against the virus. It is further identified that viral IE-gene expression interferes with the antiviral response in human macrophages and ICP27 is identified as an important viral protein counteracting the early innate immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.