Abstract

The intranuclear distribution of human Alu elements and herpes simplex virus type 1 (HSV-1) genomes was examined in HeLa cells by post-embedding in situ hybridization using in parallel appropriate biotinylated DNA probes. The bound probes were detected by direct immunogold labeling. In non-infected cells, human Alu elements detected by BLUR 8 were randomly scattered over the masses and strands of chromatin throughout the nucleus. The marked asynchrony of the HSV-1 cycle in individual HeLa cells of 17 h infected cultures allowed us to study the respective distributions of cell and viral DNA during the course of the infectious cycle. Labeling of human Alu elements revealed that cellular DNA had become confined to the border of infected nuclei without extension of cellular DNA fibers into the newly formed electron-translucent regions that occupied the centers of the infected nuclei. Labeling of HSV-1 DNA detected by a viral DNA probe revealed that non-encapsidated viral genomes were present exclusively within this centrally located viral region whereas encapsidated HSV-1 genomes, which were more widely distributed in the infected cell, were seen within the marginated host chromatin as well as the central viral region. Therefore, HSV-1 infection induces a regrouping of human Alu elements, that is, of host chromatin at the nuclear border. Non-encapsidated HSV-1 genomes and cellular DNA do not co-localize. Instead, they always constitute two adjacent compartments without spatial interrelationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.