Abstract

Identifying the control of cartilage regeneration is important both clinically and in tissue engineering research. A rabbit ear model was used to simulate surgery and trauma to explore the effect of perichondrial stripping on underlying cartilage in vivo. Ten rabbits (20 ears) formed four groups: two controls and two experimental groups. Group 1 served as the unoperated control group and underwent no treatment. Group 2 served as the operated control group and underwent elevation of auricular skin flaps without stripping the perichondrium. Groups 3 and 4 underwent increasing degrees of surgical insult. Group 3 underwent elevation of a skin flap with stripping of the perichondrium on both sides of the cartilage. Group 4 underwent both perichondrial stripping and the insertion of a thin silicone sheet as a barrier between the denuded cartilage and the skin flaps. At 3 months, punch biopsies of the cartilage were performed in each zone of insult, creating multiple thin sections. The results were analyzed using a computerized morphometry system. Histopathological examination of the groups revealed a regenerative layer of neocartilage which showed distinct hypercellular features of regeneration. The thickness of the new layer was proportional to the degree of the insult (p<0.01). A controlled insult to the perichondrium created a regenerative layer of cartilage; it seems that this layer of neocartilage is proportional to the insult. Further studies are in progress to clarify these findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.