Abstract

A low-cost fault tolerant drive topology for low- speed applications such as self-healing/limp-home needs for vehicles and propulsion systems, with capabilities for mitigating transistor open-circuit switch and short-circuit switch faults is presented in this paper. The present fault tolerant topology requires only minimum hardware modifications to the conventional off-the-shelf six-switch three-phase drive, with only the addition of electronic components such as triacs/SCRs and fast-acting fuses. In addition, the present approach offers the potential of mitigating not only transistor switch faults but also drive related faults such as rectifier diode short-circuit fault or dc link capacitor fault. In this new approach, some of the drawbacks associated with the known fault mitigation techniques such as the need for accessibility to a motor neutral, overrating the motor to withstand higher fundamental rms current magnitudes above its rated rms level, the need for larger size dc link capacitors, or higher dc bus voltage, are overcome here using the present approach. Given in this paper is a complete set of simulation results that demonstrate the soundness and effectiveness of the present topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.