Abstract

This study develops an electrical detection method for the diagnosis and fault detection of induction motors. An experiment constructs two types of defect models: broken bar and dynamic eccentricity. Electrical signals acquired during the operation of a motor are transformed through a fast Fourier transform to obtain the feature frequency components for identifying the type of motor fault. Subsequently, the Clark-Concordia transform is used to compare the stator current Concordia pattern between faulty and healthy motors. Finally, a fuzzy inference system is designed for assessing the severity of motor faults. The proposed method not only can diagnose the type of motor fault, but can also assess the operational state of a motor. The method is suitable for preparing a maintenance program for induction motors and for reducing their excessive maintenance cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.