Abstract

Hot single point incremental forming (SPIF) with induction heating and cryogenic cooling has been applied to form the Ti-6Al-4V sheets. The influence of both the forming temperature and the cooling rate after deformation, on microstructure evolution and microhardness of Ti-6Al-4V sheets, has been extensively studied. We propose the use and development of a new system of heating by induction. The system is composed of a medium–high frequency generator and a continuously water-cooled heating head, which is placed under the sheet and linked axially to the punch movement, heating the material locally by generating an eddy current within the material. Furthermore, a cooling system integrated with the movement of the forming punch allows us to apply a cryogenic fluid to the recently deformed sheet metal. Both localized heating and cooling systems are particularly suitable for such a process as SPIF, whose primary characteristic is the incremental forming of localized sheet zones. The meta-dynamic and static recrystallization processes have been suppressed in the sheet material, evident by the final microstructure and mechanical properties. Finally, a comparison between parts is made, both with and without cooling during hot SPIF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.